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Abstract. Multifractal critical phenomena with infinite-temperature critical point and with complex co-
existence of the infinite and finite temperature critical points are considered and it is shown that strange
attractors generated by cascades of period-doubling bifurcations (Feigenbaum scenario) as well as fields of
velocity differences in fluid turbulence belong to the former subclass of the multifractal critical phenomena,
while the real traffic processes and real currency exchange processes belong to the last (complex) subclass
of the multifractal critical phenomena. Data obtained by different authors are used for this purpose.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
01.75.+m Science and society

1 Introduction

Random processes generated by human activity attract
a great interest of physicists and mathematicians in last
years. Since 1997 we see an explosion in “econophysics”.
Statistical analysis of real data, numerical simulations and
some analogies with other random processes are used to
understand origin of chaos in the human activity induced
(HAI-) processes. In present time a most popular anal-
ogy is comparison with fluid turbulence (see, for instance,
[1–14] and references therein). Since the cascades of
period-doubling bifurcations (Feigenbaum scenario [15])
are considered as an universal origin of the chaos in the
fluid turbulence this analogy implies that the Feigenbaum
scenario should play analogous role in the HAI-processes.

Comparison of the real data obtained in the HAI pro-
cesses with analogous data obtained for chaos generated
by simple maps (via the Feigenbaum scenario) as well
as with data obtained in real turbulent flows is a direct
way to check applicability of this analogy and its restric-
tions. In this paper we show that both these types of
processes can be considered as multifractal critical phe-
nomena. However, while the fields of velocity differences
in fluid turbulence (as well as the strange attractors gen-
erated via the Feigenbaum scenario) belong to a simple
subclass of the multifractal critical processes with infi-
nite multifractal critical temperature, the real traffic and
economic (currency exchange) processes belong to more
complex subclass of the multifractal critical phenomena
which we called as “two-branches” subclass. For the last
subclass of the multifractal critical phenomena coexis-
tence of the infinite and finite critical points takes place.
Moreover, for some value of the multifractal temperature
a crossover from the branch growing from the infinite-
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temperature critical point to the branch growing from the
finite-temperature critical point (or even merging of these
two branches) takes place for processes belonging to this
subclass. This implies, in particular, that mathematical
models of the considered here HAI-processes and mathe-
matical models of the fluid turbulence should have princi-
pal differences.

2 Critical points

Generalized scaling implies scaling relationship between
moments of different order

Fq ∼ F ρ(q,p)p . (1)

The exponent ρ(q, p) obeys the following obvious equation

ρ(q, p)ρ(p, q) = 1. (2)

It follows from (2) that the function of two variables:
ρ(q, p), can be represented using a function of one vari-
able only

ρ(q, p) =
f(q)
f(p)

, (3)

and to find a general form of the function of one variable:
f(p), is main purpose of present paper.

The critical point pc is defined from the equation

f(pc) = 0. (4)

For usual multifractality the moment’s order - p, can be
interpreted as an inverse temperature p ∼ 1/T of a vir-
tual multifractal thermodynamics [16,17]. Therefore, it is
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interesting to check a phase-transition-like behavior of the
function f(p) in a vicinity of the critical point (cf. [18])

f(p) ∼ (p− pc)γ (5)

where γ is some critical index.
Since p is a dimensionless quantity one should normal-

ize the virtual multifractal temperature T to obtain the
order parameter p. If one studies the critical phenomena
it seems natural to normalize T using the critical temper-
ature Tc. At this normalization pc = 1 and, therefore,

f(p) ∼ (p− 1)γ1 (6)

in a vicinity of the critical temperature. There is also a
possibility that the critical temperature is infinite (i.e.
pc = 0). This case corresponds to a phase transition from
a state corresponding to the negative multifractal temper-
atures to a state corresponding to the positive multifractal
temperatures (cf. [16,18] and for a modern advance [19]).
In this case

f(p) ∼ pγ0 . (7)

It should be noted that the representation (7) for f(p)
was suggested (and rigorously proved) for the first time
for random walks probability distribution on linear frac-
tals in [20] and numerically confirmed for the random
walks probability distribution on percolation clusters
[20,21] (see also [22]).

If there is an ordinary scaling

Fq(r) ∼ rζq (8)

then

ζq
ζp

=
f(q)
f(p)

· (9)

3 Examples of the stochastic processes
with infinite critical temperature

It is well known that dissipative dynamical systems, that
exhibit the cascade of period-doubling bifurcations, are
in practice well modeled by one-dimensional maps with a
single quadratic extremum such as the map

xn+1 = 1− a|xn|2. (10)

As one increases the parameter a one observes an infi-
nite sequence of subharmonic bifurcations at each stage of
which the period of the limit cycle is doubled. This period-
doubling cascade accumulates at ac = 1, 40115... where
the system possesses a 2∞-orbit that displays scale invari-
ance. Beyond this critical value, the attractor becomes
chaotic [15]. This scenario presents strong analogy with
the second order phase transition (see [17] and references
therein). Analogous scenario (generally called Feigenbaum
scenario) takes also place for other values of z > 2, i.e. for
generalized map

xn+1 = 1− a|xn|z. (11)

Fig. 1. ln(ζq/ζ1) against ln(q) for the critical chaos generated
by the map xn+1 = 1− a|xn|z (full circles correspond to z = 3
and open circles correspond to z = 2). Data are taken from [24].
Straight lines are drawn to indicate agreement with the critical
representation ζq ∼ qγ0 .

In paper [23] the generalized dimension spectrum Dp was
computed for different critical strange sets corresponding
to (11). Then, in a more recent paper [24] the existence
of a global universality for the generalized dimensions Dp

on all critical points of phase transitions from period-η-
tuplings to chaos in 1D iterative systems was established,
that gives a possibility to consider all these multifractal
spectra (for given map) in an universal form, introducing
normalized generalized dimensions Dp/D0. In the general
case one can define the scaling exponents ζp using the
generalized dimensions

ζp = Dp(p− 1) +D0 (12)

then

ζp
ζ1

=
Dp

D0
(p− 1) + 1. (13)

In Figure 1 we show these universal scaling data (taken
from [24]) for z = 2 (open circles) and for z = 3 (full cir-
cles). The log-log axes: ln(ζq/ζ1) and ln q, are chosen for
comparison with the critical representation: ζq ∼ qγ0 (cor-
responding to the infinite critical temperature) and the
straight lines are drawn to indicate good agreement be-
tween the critical representation and the numerical data.
One can also extract values of the critical exponent γ0

from this figure: γ0 ' 0.93 for z = 2 and γ0 ' 0.86 for
z = 3.

In the last years the statistic properties of the traffic
and economic processes have been compared, as a rule,
with analogous properties of velocity differences in turbu-
lence [1,2]. Let us consider the corresponding moments of
the velocity differences at the scales r

Fq = 〈|v(x+ r) − v(x)|q〉 ∼ rζq . (14)
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Fig. 2. ln(ζp/ζ1) against ln(p) for the data represented in [25]
and obtained in different turbulent flows for the velocity dif-
ferences field.

A particular case of the generalized scaling of the turbu-
lent processes then can be represented as

Fq ∼ F ζq/ζ11 (15)

(see, for instance, [25,26] and references therein). A re-
markable property of the generalized multifractality is
that the generalized scaling (15) can be observed for low
Reynolds numbers or for small scales belonging to the dis-
sipative range where usual scaling is not verified, but is
expected for large values of the Reynolds number [25].

The data shown in Figure 2 correspond to fully devel-
oped turbulence, to thermal convection and to magneto-
hydrodynamic turbulence (the data taken from [25]). All
these processes have very close values of ζq/ζ1. One can
see that these data can be well fitted by the approxima-
tion (7, 9) (corresponding to the infinite critical temper-
ature) with the critical index γ0 ' 0.9. It is interesting
to compare this value of the critical index with the val-
ues obtained above for the Feigenbaum chaos. It seems
rather plausible that for some value of z, belonging to
the interval [2, 3], the generalized map (11) should gener-
ate Feigenbaum attractor with the critical index γ0 = 0.9
(due to γ0 ' 0.93 for z = 2 and γ0 = 0.86 for z = 3).
In any case, it is clear that the multifractality of the tur-
bulent velocity differences belongs to the same subclass
that the multifractality of the Feigenbaum strange attrac-
tors generated by the generalized map (11) do, i.e. to the
subclass with infinite multifractal critical temperature.

4 Two-branch critical phenomena with finite
critical temperature

Multifractality of the real traffic and economic processes,
however, seems to be more complex than multifractality
of the above considered Feigenbaum chaos and stochastic

field of velocity differences in fluid turbulence. If the sys-
tem has both the finite and infinite multifractal critical
points it is nontrivial to chose from (9) what branch of
the f -function (corresponding to pc = 0 or corresponding
to pc = 1) determines the ordinary scaling exponent ζp for
p > 1. In this case, it is possible that ζp can cross over be-
tween these two critical branches or even these branches
can merge for some pmer > 1. After this crossover (or
merging), i.e. for p > pmer

ζp ∼ (p− 1)γ1 . (16)

Let us show that just this complex (two-branches) case
takes place in real traffic and economic data.

In paper [27] intermittent behavior of traffic flow was
related to switches between a congested flow regime and
a free flow regime. 1/f -noise corresponds to such model
intermittency (see also [28]). On the other hand, in a
recent paper [2] a reliable statistical analysis of a large
amount of high-resolution traffic data, with the veloci-
ties and arrival times recorded of any car that passed an
induction loop detector, was performed and 1/fα-noise
(with α ' 1.14) was found. Moreover, the authors of
reference [2] report also results of a high order statistical
analysis of these data: high order moments of the velocity
differences ∆vτ = v(t − τ) − v(t), between cars a time-
delay τ apart. This analysis show scaling behavior of the
moments

Fp(τ) = 〈(∆v(t − τ)− v(t))p〉 ∼ τζp . (17)

In Figure 3 we show a set of ζp (full circles) extracted in
[2] from the data of velocities of single cars crossing an in-
duction loop detector, collected at Köln-Nord over more
than one week. The raw data set contains a total of 515,
429 data-points. We use only even (see [25]) moments with
p = 2, 4, 6, 8, 10. The log-log axes are chosen for com-
parison with the critical representation (16). The straight
line indicates good agreement between the data and the
critical representation (16).

Let us now consider some real stochastic processes in
economics. In a recent paper [9] a multi-affine analysis
of typical currency exchange rates was performed. The
moments were defined as

Fp(τ) = 〈|y(t)− y(t′)|p〉τ (18)

with τ = |t − t′|, the currency exchange rates y(t) were
taken as the closing values of successive open banking
days recorded in Brussels market for the USD/DEM and
JPY/USD exchange rates from Jan. 1, 1980 to Dec. 31,
1996. Only non-zero terms were taken into account in the
average over all couples of points (y(t), y(t′)). About 4400
points were considered for each currency in the period
covering 16 years. The scaling law

Fp(τ) ∼ τζp (19)

was observed for the moments (18). The exponents ζp ex-
tracted in [9] from these data are also shown in Figure 3
(open circles). It should be noted that ζp/ζ2 are approxi-
mately the same for USD/DEM and for JPY/USD data.
The straight line indicate agreement of the data with the
critical representation (16).
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Fig. 3. ln(ζp/ζ2) against ln(p − 1) for the data (full circles)
collected at Köln-Nord over more than one week [2] for veloc-
ities of single cars crossing an induction loop detector and for
the typical currency exchange rates taken as the closing values
of successive open banking days recorded in Brussels market
for the USD/DEM and JPY/USD exchange rates from Jan. 1,
1980 to Dec. 31, 1996 (data - open circles, are taken from [9]).
Straight lines are drawn to indicate agreement with the critical
representation (16).

5 Discussion

It seems to be expectable that the stochastic fields of the
velocity differences in fluid turbulence belong to the same
multifractal subclass as the strange attractors generated
by the cascade of period-doubling bifurcations do (these
cascades were very widely discussed in the literature as an
origin of chaos in fluid turbulence velocity fields). How-
ever, the above considered traffic and economic processes
belong to the more complex (two-branches) class of the
critical multifractal processes (it should be noted, that
the fits get much more worse if we use p instead of (p− 1)
as a variable for the traffic and economic data, and (p−1)
instead of p for the “cascade” data). Therefore, the anal-
ogy between the traffic and economic random processes
and the fields of turbulent velocity differences has rather
restricted character. This observation does not still mean
that mathematical models of the random processes gen-
erated by human activity should be more complex than
the hydrodynamical models are. It just means that these
models should have principal differences and, in particu-
lar, that origin of the chaos in the traffic and economic
processes is not related directly to the cascades of period-
doubling bifurcations.

The author is grateful to S. Lovejoy and to F. Schmitt for
sending reprints of their papers, and to D. Stauffer and to
an anonymous Referee for information, comments and sugges-
tions.
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